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Cellular automata in two dimensions that generalize the bootstrap percolation 
dynamics are considered, focusing on the threshold Pc of the initial density for 
convergence to total occupancy to occur; these models are classified according 
to Pc being 0, 1, or strictly between these extreme values. Explicit upper and 
lower bounds are provided in the third case. 
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In  this paper  I cons ider  fur ther  the cel lular  a u t o m a t a  s tudied in ref. 4 in the 
two-d imens iona l  case. The models  are  defined as follows. Each site x of Z 2 
is at  t ime t = 0, 1, 2,... in state t/ ,(x) e {0, 1 }. At  t = 0 the sites are indepen-  
dent ly  in state 1 (occupied)  with p robab i l i t y  p or  in state 0 (vacant )  with 
p robab i l i t y  1 - p .  The evo lu t ion  in t ime is determinis t ic ,  with the fol lowing 
features. Let  N = ( 0 , 1 ) ,  W = ( - 1 , 0 ) ,  S = ( 0 , - 1 ) ,  and  E = ( 1 , 0 )  be the 
nearest  ne ighbors  of the or igin of 7/2. Set also Y = {N, W, S, E}. To define 
the dynamics ,  take a set 9 of subsets  of ~2 with the p rope r ty  of being 
increasing,  i.e., if A ~ B and  A ~ 9 ,  then B �9 9 .  Let  the t rans la t ion  by x of 
a set A c 22 be wri t ten  as 

A + x =  { y ~ Z 2 :  y = z  + x for some z e A }  

The evolu t ion  is given by the fol lowing rules: 

(i) If  r/,(x) = 1, then ~/,+ ~(x) = 1. 
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(ii) Ifr/ t(x ) = 0 a n d t h ( y  ) = 1  for all y ~ A  + x  for s o m e A e g ,  then 
rll+l(x) = 1. 

(iii) Otherwise t/t +~(x) = 0. 

I denote by Pp(. ) the law of the process starting from density p. 
Bootstrap percolation describes the models for which a set is or is not 

in ~ depending only on its cardinality, that is, the cases of the sort 

9 =  {A = JV': [A[ >/l} 

for some fixed l = 1, 2, 3, 4. 
Adler and Aharony 11) introduced models that they call diffusion 

percolation, which are closely related to the models that I am considering. 
For  each one of these models defined above, the density at time t, 

p, (p)  = Pp(tlt(O ) = 1) 

is nondecreasing in t and hence converges to the asymptotic density 

p ~ ( p )  = lira p, (p)  
l ~ O 0  

When poo(p)= 1 one says that the process converges to total occupancy. 
Due to monotonicity in p one naturally defines the critical point 

p,, = inf{p >~ 0: Po~(P) = 1 } 

In this paper I will classify all these two-dimensional models according 
to Pc. being 0, 1, or strictly between these two extreme values. Some explicit 
upper and lower bounds will also be provided in the third case. 

First I recall results from ref. 4. The four oriented models are those 
with 9 =  {A c~A#: 5P c A } ,  where 5 P is, respectively, {E, U}, {N, W}, 
{ W, S}, or {S, E}. I (arbitrarily) call the first one the basic oriented model. 
In Section 4 of ref. 4 it was proven that for the oriented models 

Pc = 1 - p* 

where p* is the critical point for oriented site percolation on 7/2. I say 
that a model I dominates a model II if (with a self-explanatory notation) 
~H C ~i,  i.e., if it is easier for a vacant site to become occupied in I com- 
pared to II. In Section 5 of ref. 4 a simple argument was given showing that 
if a model does not dominate any oriented model, then this model has 
Pc = 1. In other words, if no one of the sets {E, N}, {N, W}, { W, S}, and 
{S,E} is in ~ ,  then pc = 1. (In our case it is enough to observe that 
squares of side 2 of vacant sites at time 0 will remain vacant forever.) 
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Now 1 consider models that dominate one of the oriented models, and 
with no loss of generality (due to symmetry), one can suppose that the 
dominated model is the basic oriented model, i.e., 

{E, N} e 9  (1) 

There are two cases: 

Case I. Relation (1) holds and at least one of the following sets is 
also in 9 :  {N, W}, {S, E}. 

Coso II. Relation (1) holds, but no one of the sets {N, W}, {S, E} 
is in 9.  

Theorem.  

(i) In Case I, Pc=O. 

(ii) In Case II, 1 - ( p , ) 1 / 4  ~ Pc ~< 1 - -  p * ;  in particular, Pc e (0, 1). 

Proof. (i) By symmetry, there is no loss in generality in assuming 
that { {E, N}, {S, E} } ~ 9.  

Define the subsets of 22. 

V(i; j )= {(x, y ) e 2 2 :  x = i ,  O<~ y<~j} 

H(il, i 2 ; J )=  {(x, y ) eZ2 :  i 1 ~ x ~ i2, y - - - - j }  

Consider now the numerical sequence (ink)k= 1.2.... given by 

rn 1 = --I 

mk+ 1 = m k - - k  

And for k =  1, 2 .... define the events 

Fk = {For all ie  {m~+l + 1 ..... ink} there is at least one 
site x ~ V(i; k - 1 ) such that ~/o(x) = 1 } 

Gk = { For some x e H(m,  + 1 -~ 1, m k ; k), r/o(X) = 1 } 

If F1 and GI happen, then the region V(m2 + 1, 1) is completely occupied. 
If also F 2 and G2 happen, then it is easy to see that V(m 3+1,2)  and 
H(m 3 + 1, m3; 0) will eventually become completely occupied. Reasoning 
inductively, we see that if all the events Fk, Gk, k = 1, 2,..., happen, then in 
particular all sites of the form ( - h ,  0), h = i, 2,..., will become eventually 
occupied. The probability that all these events happen is 

e ( p ) =  f i  [P(Fk) .P(G~)]= f i  [ 1 - ( 1 - p ) k ]  k+~ 
k = l  k = l  
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Hence, for every p > 0, 

e(p) > 0 (2) 

The origin is said to be a good site if all the events F k, Gk, k =  1, 2 ..... 
happen. More generally, one says that the site x �9 7/2 is a good site if all 
these events happen when t/o is replaced by the shifted configuration 0 xr/o 
given by 

(o x.o)(y)=~o()' + x) 

By ergodicity and (2), there is with probability one good sites on the x axis 
to the right of the origin. Therefore, by the remarks above, the origin will 
almost surely become eventually occupied and 

poo(p)=Pp(rlt(O)-- 1 for some t>~0)= 1 

This completes the proof of (i). 

(ii) Consider the squares of side 2, 

Q(x, y ) =  {(2x, 2y), ( 2x+  1, 2y), ( 2x+  1, 2 y +  1), (2x, 2 y +  1)} 

Think of a new lattice 77 2 and declare the site (x, y) of this new lattice 
to be vacant at time t if and only if the four sites in Q(x, y) are vacant at 
time t in the original lattice. 

One says that double-oriented percolation of vacant sites occurs in the 
configuration ~ if there is a doubly infinite chain of sites..., z_ l ,  Zo, zl .... 
such that Zo = 0, ~(zi) = 0, and z i+ 1 e {zi + (1, 0), z~ + (0, 1 ) }, for i e 77. 

Suppose that at t = 0  double-oriented percolation of vacant sites 
occurs in the new lattice. I will argue that then the same will occur at any 
later time and in particular t/,(0) = 0 for every t ~> 0. Indeed, if z = (x, y) 
belongs to the doubly infinite chain of vacant new sites which is present at 
t =0 ,  then in the original lattice the four sites of Q(z) are vacant and: 

(a) (2x, 2y) and ( 2 x + l ,  2 y + l )  have at most one occupied 
neighbor. 

(b) (2x, 2 y +  1) has at most the sites to its north and west occupied. 

(c) (2x+  1, 2y) has at most the sites to its south and east occupied. 

Hence, by the hypothesis, Q(z) will still be completely vacant at time t = 1. 
(Observe that if ~ contains a singleton, then it must contain one of the sets 
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{N, W}, or {S, E}.) Induction on t completes now the argument, which 
leads to 

1 - p ~ ( p )  

~> Pp(at t = 0 there is double-oriented percolation 

of vacant sites in the new lattice) (3) 

But if ( 1 -  p ) 4 > p . ,  then the rhs of (3) is strictly positive, since double- 
oriented percolation is equivalent to oriented percolation in the first quadrant 
and simultaneous oriented percolation with inverted orientations in the 
third quadrant. Hence 

pc~> 1 - (p.)1/4 

The other bound, 

pc~< 1 - p *  

is a trivial consequence of the fact that the model dominates the basic 
oriented model and that, as remarked before, the critical point of this latter 
model coincides with 1 -  p*. | 

Part (i) of the theorem applies to bootstrap percolation with l =  2, for 
which the result p c = 0  had been proven by van Enter ~ based on an 
unpublished idea by Straley. The present proof was in fact inspired by these 
arguments, but in a sense it is more robust, since it applies to certain 
models in which the orientation is relevant and for which the Straley 
van Enter argument does not apply. For  instance, Duarte ~2) considered the 
model for which a vacant site becomes occupied when at least two among 
its three neighbors to the north, east, and south are occupied. He observed 
that the Straley van Enter argument does not apply and obtained from 
simulations on lattices of linear size between 5 and 15,360 the numerical 
prediction Pc = 0.034 _ 0.01. For  this model { {N, E}, {S, E} } c 9 ,  so that 
the present theorem implies Pc. = 0. 

As a consequence of the present bounds on p~, I conclude in particular 
that no model in the class considered can have Pc in the intervals 
(0, 1 -  (p.)1/4) and ( 1 - p * ,  1). The oriented models have pc= 1-p*  and 
I conjecture that there are models that dominate an oriented model and 
have 0 < Pc < 1 - p*. A candidate for this seems to be the model defined by 

~ = { A = J V ' : { N , E } c A  or {W,E}cA}  
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